West Seattle Bridge Community Task Force

Meeting #11
October 21, 2020
Agenda

• Welcome and agenda overview
• Bridge Updates
• Reconnect West Seattle 2020 Implementation Update
• Rapid Span Replacement Concept Review
• Repair or Replace: Cost-Benefit Analysis
• CTF discussion on CBA
• Next steps

Please note, audio and video for this event is being livestreamed and afterward will be available online and accessible to media.
Ensuring CTF meetings are accessible

• Use the chat feature sparingly; please raise your “hand” instead if you want to ask a question or make a statement

• Identify yourself every time you speak or ask a question

• If referencing something on the screen, please clearly describe it

• For questions that do make it into the chat, co-chairs/facilitators will name the CTF member and read out the question
Bridge Updates

Heather Marx

October 21, 2020
Stabilization Measures Underway

Left photo: Rebar cages/forms for deviator blocks. These are embedded into the interior girder floor to provide reinforcement and anchorage. Deviator blocks keep the post-tensioning strands from touching the bottom of the girder as they travel between anchor locations.

Right photo: Looking down from the bridge deck at the work platform under Pier 18.
Reconnect West Seattle 2020 Implementation Update

<table>
<thead>
<tr>
<th>Delivery Year</th>
<th>Survey Category</th>
<th>#</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>Freight</td>
<td>F03</td>
<td>14th Ave S and S Cloverdale St Improvements</td>
<td>Relocate the stop bars and signal detection and expand the width of the south leg crosswalk</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>Georgetown</td>
<td>28</td>
<td>Airport Way S Safety Improvements</td>
<td>Add speed radar feedback signs</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>Georgetown</td>
<td>183</td>
<td>S Michigan St and Corson Ave S</td>
<td>Extend length of northbound right turn lane</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>SODO</td>
<td>7</td>
<td>East Marginal Way PBL Improvements</td>
<td>Refresh existing bike lane markings, add delineators and green driveway markings</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>SODO</td>
<td>26</td>
<td>SODO Pothole Repair</td>
<td>Repair potholes along detour routes and other locations</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>SODO</td>
<td>45195</td>
<td>S Lander St Bridge Acceleration</td>
<td>Accelerate construction of the S Lander St Bridge</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>South Park</td>
<td>135</td>
<td>South Park Bike and Pedestrian Map</td>
<td>Map of bike and pedestrian routes to access the South Park and 1st Ave S Bridge</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>South Park</td>
<td>301</td>
<td>S Cloverdale St Safety Improvements</td>
<td>Add speed radar feedback signs</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>West Seattle</td>
<td>62063</td>
<td>16th Ave SW and SW Holden St Improvements</td>
<td>Add northbound and southbound left turn lanes</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>West Seattle</td>
<td>W25</td>
<td>Delridge Way SW and SW Orchard St Signal Improvements</td>
<td>Update signal timing</td>
<td>Complete</td>
</tr>
<tr>
<td>2020</td>
<td>West Seattle</td>
<td>W51</td>
<td>West Seattle Arterial Maintenance</td>
<td>Repair potholes on 35th Ave SW, W Marginal Way SW, SW Delridge Way, SW Holden St</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Automated Enforcement

• Installing signs to reflect upcoming photo enforcement this weekend

• Pole mounted cameras at bridge entry points and warning signs

• Cameras capture license plate numbers

• Similar to red-light and school enforcement

• Low Bridge Access Subcommittee created to inform policy
Automated enforcement timeline

- **9/29/2020**: Council Approved Ordinance
- **10/2/2020**: Mayor signed legislation
- **10/23/2020**: Start installing new signs
- **12/1/2020**: Activate automated enforcement system (target date)
- **12/1/2020**: Warning notices issued for 30 days
- **1/1/2021**: Violation notices issued ($75) (target date)
Traffic Management Questions?
West Seattle High-Rise Bridge Rapid Span Replacement Concept
HNTB Approach and Lake Champlain Experience

Assumptions for West Seattle Bridge

• Speed and safety are top priorities
• Replacement on existing alignment has major schedule benefits
• Re-use existing substructures to reduce cost and streamline permitting
• Optimize clearances for Duwamish navigation
• Improve seismic performance – seismic isolation
• Minimize navigational impacts – short duration channel closures
• Engineered demolition using heavy-lift techniques
• Demolition and fabrication simultaneously
• Build on successes from Lake Champlain Bridge
Streamlined Construction
Schedule Risks

- Engineered demolition of the compromised bridge
- Seismic performance – liquefaction/lateral spreading
- Permitting and lead agency identification

- Fast-track funding
- Constrained site – construction engineering
Benefits: Enhanced Safety, Long Term Durability

Enhanced Safety
- All members system & internally redundant
- Improved navigation clearance
- Enhanced seismic performance

Long Term Durability
- Enhanced corrosion protection
- 100-year design service life
- Replaceable components
- Displacement tolerant
Benefits: Reduced Environmental Footprint = Streamlined Permitting

- Potential to eliminate in-water work
- Low navigation impacts for float in float out
- Minimized fisheries impact
- Reduced hazmat impacts
- Foundation strengthening minimized/eliminated
- Opportunity for faster USCG permitting
Benefits: Accelerated Construction Schedule

- Reuse of existing piers and foundations
- Construction strategy integrated into design
- Arch fabrication concurrent with back span construction
- Outreach to Northwest fabricators/contractors
- Past success with Lake Champlain Bridge in both Cost / Schedule
- Expedited process and efficiency of construction very likely to yield lower construction costs

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
<th>2021</th>
<th>2022</th>
<th>2023-2071</th>
<th>2072</th>
<th>2073-2101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Rapid Span Replacement</td>
<td>0.75 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition</td>
<td>0.85 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricate and Install Rapid Span Replacement</td>
<td>2 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Bridge Service Life</td>
<td>75 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Strengthening</td>
<td>1 Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cost-Benefit Analysis (CBA)

Heather Marx and Greg Izzo, SDOT
October 21, 2020
CBA analysis is one input for decision making

- Repair or Replace
- External Factors in the City, State and Country
- SDOT Asset Management Input
- Funding Opportunities
- Uncertainties and Risks
- Cost Benefit Analysis
- Technical Advisory Panel Input
- Community Task Force Feedback

Department of Transportation
What the CBA includes

• The CBA provides detailed analysis of each alternative’s performance, costs and risks
• Building on past CTF discussions about performance and risks, today we're focusing on rough order of magnitude conceptual cost data and what the CBA tells us

• Important notes about cost data
 • All alternatives were evaluated conservatively
 • Costs reflect 0% design and will change; actual costs generally don’t emerge until 30% design
 • CBA requires us to pick a value, which we would typically share as an estimated range
 • The rapid span replacement concept had not yet been identified when we began the CBA effort
What the CBA does not include

• **Which alternative to choose:** The CBA does not – and was not intended – to yield a specific decision on any alternative.

• **The whole story:** Each CBA component tells only one part of the story; alternatives should be evaluated using all components, as well as factors outside the scope of the CBA.

• **A simple story:** Individual CBA components are more complex than we have time to discuss today as a group. Our goal in this presentation is to summarize the most relevant findings.
Understanding cost data

• A combination of capital costs and life cycle costs contribute to the overall "ownership" cost for each alternative

• Capital project cost components:
 • Construction costs (demo, construction, contingencies)
 • Monetized risks (cost impacts based on probability and impact of risks)
 • Other costs (design, permitting, 3rd party review, administration, inspection)

• Life cycle cost components, inclusive of inflation and discount rates:
 • Operations and maintenance (monitoring, inspection, standard maintenance)
 • Repair and rehabilitation costs (lump sum allowance for future replacement if repair chosen and/or future strengthening if replacement chosen)
 • Remaining service life value of the structure after 2100, when the CBA life cycle cost analysis ends)

• Each cost component tells only one part of the story, so alternatives should be evaluated using all components
Alternative 1: Shoring

- **Estimated Total Ownership**: $1585.9M
- **Estimated Upfront Construction Costs**: $103.5M
- **How long could it take?** Could return partial traffic by late 2024
- **How long could it last?** 5 years
- **Biggest Risks/Drawbacks**:
 - Complex, costly, short lifespan and long construction duration
 - Does not restore full capacity
 - Still requires replacement = closing the bridge again
Alternative 1: Other Cost details

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Construction Costs</th>
<th>Monetized Risk</th>
<th>Other Costs (ROW, admin, etc)</th>
<th>Operations and Maintenance (Lifetime)</th>
<th>Repair and Rehabilitation</th>
<th>Remaining Service Life after 2100 (end of the CBA)</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 1 (Shoring)</td>
<td>$103.5M</td>
<td>$0M</td>
<td>$21.6M</td>
<td>$32.3M</td>
<td>$1,525.9M</td>
<td>($124.4M)</td>
<td>$1558.9M</td>
</tr>
</tbody>
</table>

Other key cost highlights:
- No capital cost risks were monetized for Alternative 1

Key question: How much traffic could use the bridge?
- The shoring alternative is only able to restore three to five lanes of traffic to live load
Alternative 2: Repair

- Estimated Total Ownership: $916.0M
- Estimated Upfront Construction Costs: $47M
- How long could it take? Could return traffic in 2022
- How long could it last? 15+ years (see risk below)
- Biggest Risks/Drawbacks:
 - Not confident in duration of repairs
 - Difficult to secure needed annual maintenance funding
 - Seismic performance lower than replacement alternatives
 - Still requires replacement = closing the bridge again
 - Greater uncertainty and more complexity in future (T5, LINK, traffic demand, increased density)
 - Securing funding to replace a functioning (repaired) bridge later perhaps harder than funding a closed bridge now
Alternative 2: Other Cost details

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Construction Costs</th>
<th>Monetized Risk</th>
<th>Other Costs (ROW, admin, etc)</th>
<th>Operations and Maintenance (Lifetime)</th>
<th>Repair and Rehabilitation</th>
<th>Remaining Service Life after 2100 (end of the CBA)</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 2 (Full Repair)</td>
<td>$47M</td>
<td>$175.4M</td>
<td>$10.9M</td>
<td>$40.5M</td>
<td>$1,279.8M</td>
<td>($637.8M)</td>
<td>$916.0M</td>
</tr>
</tbody>
</table>

Key cost highlights: Monetized Risk of $175.4M
- If bridge stabilization measures don’t react as predicted: $4.5M
- If repaired bridge has only 15-year service life instead of 40: $171M

Key question: How long will the repairs last?
- Having adequate Operations and Maintenance resources remains an unresolved challenge for the City
- The 40-year durability assumption in the CBA comes from current AASHTO codes; models show the bridge is responding well to stabilization measures
- Repair duration remains an unknown
- Increased certainty requires further study of how long repairs could last – a ~6-month process for a probabilistic determination
Normal, Essential and Critical Bridges

• These are terms used to convey the classification of a bridge and the requirements it is built to meet in the event of an earthquake. For a high earthquake event:
 • **Normal/Ordinary Bridges**: a reduced number of lanes is available within three months of the earthquake
 • **Essential/Recovery Bridges**: within three months, repairs on a damaged bridge would allow traffic on some portion of the bridge, possibly with vehicle weight restrictions
 • **Critical Bridges**: Within three days, repairs on a damaged bridge would allow traffic on some portion of the bridge, possibly with vehicle weight restrictions
Alternative 4: Superstructure Replacement

- Estimated Total Ownership: $1005.7M
- Estimated Upfront Construction Costs: $383.1M
- How long could it take? Could return traffic in 2026
- How long could it last? 75 years
- Biggest Risks/Drawbacks:
 - Mobility impacts from longer closure
 - Securing funding; larger up-front capital cost
 - Permitting and regulatory issues could impact schedule
Alternative 4: Other Cost details

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Construction Costs</th>
<th>Monetized Risk</th>
<th>Other Costs (ROW, admin, etc)</th>
<th>Operations and Maintenance (Lifetime)</th>
<th>Repair and Rehabilitation</th>
<th>Remaining Service Life after 2100 (end of the CBA)</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 4 (Superstructure Replacement)</td>
<td>$383.1M</td>
<td>$229.5</td>
<td>$123.7M</td>
<td>$22.1M</td>
<td>$247.3M</td>
<td>$0M</td>
<td>$1,005.7M</td>
</tr>
</tbody>
</table>

Key cost highlights: Monetized Risk of $229.5M
- Geotechnical standards change: $13.5 million
- The bridge seismic importance classification is CRITICAL instead of ESSENTIAL: $27 million
- USCG has higher vertical clearance requirements: $189 million

Key question: How long will it take to return traffic to the bridge?
- The CBA used the most conservative estimate of 6 years (2026)
- There is a replacement scenario with a potentially faster delivery timeline not explored in the CBA
Alternative 5: Full Replacement (On alignment)

- Estimated Total Ownership: $1,542.7M
- Estimated Upfront Construction Costs: $564.7M
- How long could it take? Could return full traffic in 2026
- How long could it last? 75 years
- Biggest Risks/Drawbacks:
 - USCG clearance risks are higher in Alt 5 than Alt 4
 - Mobility impacts from longer closure
 - Securing funding; larger up-front capital cost
Alternative 5: Other Cost details

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Construction Costs</th>
<th>Monetized Risk</th>
<th>Other Costs (ROW, admin, etc)</th>
<th>Operations and Maintenance (Lifetime)</th>
<th>Repair and Rehabilitation</th>
<th>Remaining Service Life after 2100 (end of the CBA)</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 5 (Full Replacement)</td>
<td>$564.7M</td>
<td>$473.5M</td>
<td>$208.6M</td>
<td>$29.6M</td>
<td>$282.0M</td>
<td>$(15.6M)</td>
<td>$1,542.7M</td>
</tr>
</tbody>
</table>

Key cost highlights: Monetized Risk of $473.5M
- Geotechnical standards change: $45 million
- The bridge seismic importance classification is CRITICAL instead of ESSENTIAL/RECOVERY: $90 million
- FAA flight path restrictions require lower bridge height: $149.5 million
- USCG has higher vertical clearance requirements: $189 million

Key question: How long will it take to return traffic to the bridge?
- The CBA used the most conservative estimate of 6 years (2026)
- There may be replacement scenarios with a faster delivery timeline not explored in the CBA
Alternative 6: Immersed Tube Tunnel (Off Alignment)

- Estimated Total Ownership: $2,823.6M
- Estimated Upfront Construction Costs: $1,992.1M
- How long will it take? Could return full traffic by 2030
- How long could it last? 75 years
- Biggest Risks/Drawbacks:
 - Environmental: Hazardous materials from dredging the bottom of the Duwamish Waterway
 - Mobility impacts from a long construction duration
 - Securing funding
 - Impacts to Harbor Island
 - Unique asset for SDOT to maintain
Alternative 6: Other Cost details

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Construction Costs</th>
<th>Monetized Risk</th>
<th>Other Costs (ROW, admin, etc)</th>
<th>Operations and Maintenance (Lifetime)</th>
<th>Repair and Rehabilitation</th>
<th>Remaining Service Life after 2100 (end of the CBA)</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 6 (Immersed Tube Tunnel)</td>
<td>$1,992.1M</td>
<td>$269M</td>
<td>$452.2</td>
<td>$110.3M</td>
<td>$214.5M</td>
<td>$(217.1M)</td>
<td>$2,821.0M</td>
</tr>
</tbody>
</table>

Key cost highlights: Monetized Risk of $269M
- Geotechnical standards change: $28.5 million
- The seismic importance classification is CRITICAL instead of ESSENTIAL: $35.5 million
- New casting facility: $205 million

Key question: How long would it take to build the tunnel?
- The CBA used the most conservative estimate of 9 years (2030)
- There may be construction scenarios with a faster delivery timeline not explored in the CBA
Attribute Performance

Orange Highlight with * = Highest Performance Amongst Alternatives

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance, Inspection & Operation</td>
<td>3.7</td>
<td>5.0</td>
<td>7.4*</td>
<td>7.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Constructability</td>
<td>2.8</td>
<td>5.0</td>
<td>5.2*</td>
<td>4.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Environmental</td>
<td>3.7</td>
<td>5.0*</td>
<td>4.8</td>
<td>3.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Equity</td>
<td>2.8</td>
<td>5.0*</td>
<td>4.1</td>
<td>3.2</td>
<td>1.0</td>
</tr>
<tr>
<td>Forward Compatibility</td>
<td>2.1</td>
<td>5.0</td>
<td>7.0</td>
<td>8.1*</td>
<td>5.7</td>
</tr>
<tr>
<td>Funding Opportunities</td>
<td>5.2*</td>
<td>5.0</td>
<td>4.8</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Business & Workforce Impacts</td>
<td>3.9</td>
<td>5.0*</td>
<td>3.9</td>
<td>2.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Mobility Impacts</td>
<td>3.0</td>
<td>5.0*</td>
<td>4.1</td>
<td>3.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Multimodal Impacts</td>
<td>4.1</td>
<td>5.0</td>
<td>6.8*</td>
<td>5.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Seismic/Safety</td>
<td>4.6</td>
<td>5.0</td>
<td>7.9</td>
<td>8.8*</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Key issues:
- Highest weighted attributes for Community Task Force are seismic, constructability and mobility
- Any alternative that reduces the time to restore traffic will have a higher score for the environmental, equity, business & workforce impacts, and mobility impact attributes
Speed and durability

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Restores traffic</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 (Shoring)</td>
<td>Partial traffic by 2025</td>
<td>5 years</td>
</tr>
<tr>
<td>Alternative 2 (Repair)</td>
<td>2022</td>
<td>15-40 years*</td>
</tr>
<tr>
<td>Alternative 4 (Superstructure Replacement)</td>
<td>2026</td>
<td>75 years</td>
</tr>
<tr>
<td>Alt 5 (Full Replacement)</td>
<td>2026</td>
<td>75 years</td>
</tr>
<tr>
<td>Alt 6 (Immersed Tube Tunnel)</td>
<td>2030</td>
<td>75 years</td>
</tr>
</tbody>
</table>

* Derived life span range, CBA costs based on 40-year lifespan, per AASHTO codes
Annual O&M Costs

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Average Annual</th>
<th>Total O&M Costs (2021-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1</td>
<td>$409 K</td>
<td>$32.3 M (3.1%)</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>$513 K</td>
<td>$40.5 M (4.4%)</td>
</tr>
<tr>
<td>Alternative 4</td>
<td>$280 K</td>
<td>$22.1 M (2.2%)</td>
</tr>
<tr>
<td>Alternative 5</td>
<td>$375 K</td>
<td>$29.6 M (1.9%)</td>
</tr>
<tr>
<td>Alternative 6</td>
<td>$1,397 K</td>
<td>$110.3 M (3.9%)</td>
</tr>
</tbody>
</table>

Examples of operations and maintenance costs include:
- Annual and Specialized Inspections
- Intelligent Transportation Systems
- Structural Health Monitoring
- Painting/UV Protection
- Ventilation & Fire Protection Systems

Annual operations and maintenance costs vary between the options

Securing adequate operations and maintenance resources for Seattle bridges is an on-going challenge and would have to be resolved for the repair pathway

NOTE: (x,y%) = total O, M, & I costs as a percentage of total LCCA costs.
Estimated Total Ownership Costs

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Estimated Total Ownership Costs (Life Cycle Costs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 (Shoring)</td>
<td>$1,558.9M</td>
</tr>
<tr>
<td>Alternative 2 (Repair)</td>
<td>$916.0M</td>
</tr>
<tr>
<td>Alternative 4 (Superstructure Replacement)</td>
<td>$1,005.7M</td>
</tr>
<tr>
<td>Alt 5 (Full Replacement)</td>
<td>$1,542.7M</td>
</tr>
<tr>
<td>Alt 6 (Immersed Tube Tunnel)</td>
<td>$2,821.0M</td>
</tr>
</tbody>
</table>

Over the total life of the West Seattle High-Rise Bridge, the estimated total ownership costs of Alternative 2 and Alternative 4 are similar.
Quick synopsis: Repair vs. Replace

Repair (Alternative 2)
- Better cost to performance ratio
- Lower capital cost
- Higher maintenance costs
- Quicker return of traffic
- Requires future long-term bridge closure
- Lower attribute performance scores overall, especially in Seismic/Safety
- Success depends on bridge's reactions to repair and stabilization
- Higher risk of resulting in another unplanned shutdown in the future

Replace (Alternatives 4, 5, 6)
- Better performing
- Higher capital costs
- Lower maintenance costs
- Longer return of traffic
- No future long-term bridge closure
- Higher overall attribute performance scores (Alts 4 and 5 only)
- Success doesn't depend on bridge reactions
- Lower risk that the new structure wouldn't achieve its 75+ year service life
Mayor’s Goals for the West Seattle Bridge Project

• Protect lives and preserve public safety
• Deliver the safest, fastest solution that provides the greatest certainty and benefit to all communities in and around West Seattle and the city, region, and state
• Identify the pathway with the highest level of certainty
• Minimize the impact of the closure on communities, particularly Black, Indigenous and People of Color communities
• Provide stability and confidence for significant economic investments being made by the Port of Seattle and Northwest Seaport Alliance, Sound Transit and others
• Secure needed funding from Federal and State partners
Task Force Discussion
Your Role as the Task Force

• Provide input and guidance to the Mayor
• Identify pros and cons of the replace vs the repair options
• Share your concerns and considerations with her as she makes this critical decision
Next Steps

• October 28: Community Task Force completes input
• Late October: Co-chairs transmit input to Mayor
• November: Mayor shares update on path forward
Thank you!

www.seattle.gov/transportation/WestSeattleBridge